Predicting the multi-label protein subcellular localization through multi-information fusion and MLSI dimensionality reduction based on MLFE classifier

Author:

Liu Yushuang12,Jin Shuping12,Gao Hongli12,Wang Xue12,Wang Congjing12,Zhou Weifeng12,Yu Bin34ORCID

Affiliation:

1. College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China

2. Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China

3. School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China

4. College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China

Abstract

Abstract Motivation Multi-label (ML) protein subcellular localization (SCL) is an indispensable way to study protein function. It can locate a certain protein (such as the human transmembrane protein that promotes the invasion of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) or expression product at a specific location in a cell, which can provide a reference for clinical treatment of diseases such as coronavirus disease 2019 (COVID-19). Results The article proposes a novel method named ML-locMLFE. First of all, six feature extraction methods are adopted to obtain protein effective information. These methods include pseudo amino acid composition, encoding based on grouped weight, gene ontology, multi-scale continuous and discontinuous, residue probing transformation and evolutionary distance transformation. In the next part, we utilize the ML information latent semantic index method to avoid the interference of redundant information. In the end, ML learning with feature-induced labeling information enrichment is adopted to predict the ML protein SCL. The Gram-positive bacteria dataset is chosen as a training set, while the Gram-negative bacteria dataset, virus dataset, newPlant dataset and SARS-CoV-2 dataset as the test sets. The overall actual accuracy of the first four datasets are 99.23%, 93.82%, 93.24% and 96.72% by the leave-one-out cross validation. It is worth mentioning that the overall actual accuracy prediction result of our predictor on the SARS-CoV-2 dataset is 72.73%. The results indicate that the ML-locMLFE method has obvious advantages in predicting the SCL of ML protein, which provides new ideas for further research on the SCL of ML protein. Availability and implementation The source codes and datasets are publicly available at https://github.com/QUST-AIBBDRC/ML-locMLFE/. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3