Benchmarking and improving the performance of variant-calling pipelines with RecallME

Author:

Vozza Gianluca12,Bonetti Emanuele12,Tini Giulia1ORCID,Favalli Valentina3ORCID,Frigè Gianmaria1ORCID,Bucci Gabriele4ORCID,De Summa Simona5,Zanfardino Mario6,Zapelloni Francesco3ORCID,Mazzarella Luca1ORCID

Affiliation:

1. Department of Experimental Oncology, European Institute of Oncology IRCCS , Milan, Italy

2. Department of Oncology and Hematology-Oncology, Università degli Studi di Milano , Milan, Italy

3. 4bases SA , Manno, Ticino, Switzerland

4. Center for Omics Sciences, IRCCS Ospedale San Raffaele , 20132 Milano, Italy

5. Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori, “Giovanni Paolo II” , Bari, Italy

6. IRCCS Synlab SDN , 80143, Naples, Italy

Abstract

Abstract Motivation The steady increment of Whole Genome/Exome sequencing and the development of novel Next Generation Sequencing-based gene panels requires continuous testing and validation of variant calling (VC) pipelines and the detection of sequencing-related issues to be maintained up-to-date and feasible for the clinical settings. State of the art tools are reliable when used to compute standard performance metrics. However, the need for an automated software to discriminate between bioinformatic and sequencing issues and to optimize VC parameters remains unmet. Results The aim of the current work is to present RecallME, a bioinformatic suite that tracks down difficult-to-detect variants as insertions and deletions in highly repetitive regions, thus providing the maximum reachable recall for both single nucleotide variants and small insertion and deletions and to precisely guide the user in the pipeline optimization process. Availability and implementation Source code is freely available under MIT license at https://github.com/mazzalab-ieo/recallme. RecallME web application is available at https://translational-oncology-lab.shinyapps.io/recallme/. To use RecallME, users must obtain a license for ANNOVAR by themselves.

Funder

Italian Ministry of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3