A latent unknown clustering integrating multi-omics data (LUCID) with phenotypic traits

Author:

Peng Cheng1,Wang Jun1,Asante Isaac2,Louie Stan2,Jin Ran1,Chatzi Lida1,Casey Graham3,Thomas Duncan C1,Conti David V1

Affiliation:

1. Department of Preventive Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA

2. Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA

3. Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA

Abstract

Abstract Motivation Epidemiologic, clinical and translational studies are increasingly generating multiplatform omics data. Methods that can integrate across multiple high-dimensional data types while accounting for differential patterns are critical for uncovering novel associations and underlying relevant subgroups. Results We propose an integrative model to estimate latent unknown clusters (LUCID) aiming to both distinguish unique genomic, exposure and informative biomarkers/omic effects while jointly estimating subgroups relevant to the outcome of interest. Simulation studies indicate that we can obtain consistent estimates reflective of the true simulated values, accurately estimate subgroups and recapitulate subgroup-specific effects. We also demonstrate the use of the integrated model for future prediction of risk subgroups and phenotypes. We apply this approach to two real data applications to highlight the integration of genomic, exposure and metabolomic data. Availability and Implementation The LUCID method is implemented through the LUCIDus R package available on CRAN (https://CRAN.R-project.org/package=LUCIDus). Supplementary information Supplementary materials are available at Bioinformatics online.

Funder

National Cancer Institute at the National Institutes of Health

NIH

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3