Cross-species prediction of essential genes in insects

Author:

Marques de Castro Giovanni1,Hastenreiter Zandora1,Silva Monteiro Thiago Augusto1,Martins da Silva Thieres Tayroni1,Pereira Lobo Francisco1ORCID

Affiliation:

1. Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais, Brazil

Abstract

Abstract Motivation Insects possess a vast phenotypic diversity and key ecological roles. Several insect species also have medical, agricultural and veterinary importance as parasites and disease vectors. Therefore, strategies to identify potential essential genes in insects may reduce the resources needed to find molecular players in central processes of insect biology. However, most predictors of essential genes in multicellular eukaryotes using machine learning rely on expensive and laborious experimental data to be used as gene features, such as gene expression profiles or protein–protein interactions, even though some of this information may not be available for the majority of insect species with genomic sequences available. Results Here, we present and validate a machine learning strategy to predict essential genes in insects using sequence-based intrinsic attributes (statistical and physicochemical data) together with the predictions of subcellular location and transcriptomic data, if available. We gathered information available in public databases describing essential and non-essential genes for Drosophila melanogaster (fruit fly, Diptera) and Tribolium castaneum (red flour beetle, Coleoptera). We proceeded by computing intrinsic and extrinsic attributes that were used to train statistical models in one species and tested by their capability of predicting essential genes in the other. Even models trained using only intrinsic attributes are capable of predicting genes in the other insect species, including the prediction of lineage-specific essential genes. Furthermore, the inclusion of RNA-Seq data is a major factor to increase classifier performance. Availability and implementation The code, data and final models produced in this study are freely available at https://github.com/g1o/GeneEssentiality/. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Graduate Programs of Genetics

Bioinformatics (PPG-Bioinfo) of Universidade Federal de Minas Gerais

CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil) – Finance

Pró-Reitoria de Pesquisa-UFMG

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3