LaGAT: link-aware graph attention network for drug–drug interaction prediction

Author:

Hong Yue1ORCID,Luo Pengyu1ORCID,Jin Shuting123ORCID,Liu Xiangrong12ORCID

Affiliation:

1. School of Informatics, Xiamen University , Xiamen 361005, China

2. National Institute for Data Science in Health and Medicine, Xiamen University , Xiamen 361005, China

3. MindRank AI Ltd. , Hangzhou 310000, China

Abstract

Abstract Motivation Drug–drug interaction (DDI) prediction is a challenging problem in pharmacology and clinical applications. With the increasing availability of large biomedical databases, large-scale biological knowledge graphs containing drug information have been widely used for DDI prediction. However, large knowledge graphs inevitably suffer from data noise problems, which limit the performance and interpretability of models based on the knowledge graph. Recent studies attempt to improve models by introducing inductive bias through an attention mechanism. However, they all only depend on the topology of entity nodes independently to generate fixed attention pathways, without considering the semantic diversity of entity nodes in different drug pair links. This makes it difficult for models to select more meaningful nodes to overcome data quality limitations and make more interpretable predictions. Results To address this issue, we propose a Link-aware Graph Attention method for DDI prediction, called LaGAT, which is able to generate different attention pathways for drug entities based on different drug pair links. For a drug pair link, the LaGAT uses the embedding representation of one of the drugs as a query vector to calculate the attention weights, thereby selecting the appropriate topological neighbor nodes to obtain the semantic information of the other drug. We separately conduct experiments on binary and multi-class classification and visualize the attention pathways generated by the model. The results prove that LaGAT can better capture semantic relationships and achieves remarkably superior performance over both the classical and state-of-the-art models on DDI prediction. Availabilityand implementation The source code and data are available at https://github.com/Azra3lzz/LaGAT. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Zhijiang Lab

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3