The effect of statistical normalization on network propagation scores

Author:

Picart-Armada Sergio12ORCID,Thompson Wesley K34,Buil Alfonso3,Perera-Lluna Alexandre12

Affiliation:

1. B2SLab, Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, CIBER-BBN, Barcelona, 08028, Spain

2. Esplugues de Llobregat, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, 08950, Spain

3. Mental Health Center Sct. Hans, 4000 Roskilde, Denmark

4. Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA

Abstract

Abstract Motivation Network diffusion and label propagation are fundamental tools in computational biology, with applications like gene–disease association, protein function prediction and module discovery. More recently, several publications have introduced a permutation analysis after the propagation process, due to concerns that network topology can bias diffusion scores. This opens the question of the statistical properties and the presence of bias of such diffusion processes in each of its applications. In this work, we characterized some common null models behind the permutation analysis and the statistical properties of the diffusion scores. We benchmarked seven diffusion scores on three case studies: synthetic signals on a yeast interactome, simulated differential gene expression on a protein–protein interaction network and prospective gene set prediction on another interaction network. For clarity, all the datasets were based on binary labels, but we also present theoretical results for quantitative labels. Results Diffusion scores starting from binary labels were affected by the label codification and exhibited a problem-dependent topological bias that could be removed by the statistical normalization. Parametric and non-parametric normalization addressed both points by being codification-independent and by equalizing the bias. We identified and quantified two sources of bias—mean value and variance—that yielded performance differences when normalizing the scores. We provided closed formulae for both and showed how the null covariance is related to the spectral properties of the graph. Despite none of the proposed scores systematically outperformed the others, normalization was preferred when the sought positive labels were not aligned with the bias. We conclude that the decision on bias removal should be problem and data-driven, i.e. based on a quantitative analysis of the bias and its relation to the positive entities. Availability The code is publicly available at https://github.com/b2slab/diffuBench and the data underlying this article are available at https://github.com/b2slab/retroData Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Spanish Ministry of Economy and Competitiveness

National Institutes of Health

Networking Biomedical Research Centre

Bioengineering, Biomaterials and Nanomedicine

Instituto de Investigación Carlos III

Share4Rare

B2SLab

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3