Protein residues determining interaction specificity in paralogous families

Author:

Pitarch Borja1,Ranea Juan A G234,Pazos Florencio1

Affiliation:

1. Computational Systems Biology Group, Systems Biology Department, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain

2. Department of Molecular Biology and Biochemistry, University of Malaga, Malaga 29071, Spain

3. CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain

4. Institute of Biomedical Research in Malaga (IBIMA), Malaga, Spain

Abstract

Abstract Motivation Predicting the residues controlling a protein’s interaction specificity is important not only to better understand its interactions but also to design mutations aimed at fine-tuning or swapping them as well. Results In this work, we present a methodology that combines sequence information (in the form of multiple sequence alignments) with interactome information to detect that kind of residues in paralogous families of proteins. The interactome is used to define pairwise similarities of interaction contexts for the proteins in the alignment. The method looks for alignment positions with patterns of amino-acid changes reflecting the similarities/differences in the interaction neighborhoods of the corresponding proteins. We tested this new methodology in a large set of human paralogous families with structurally characterized interactions, and discuss in detail the results for the RasH family. We show that this approach is a better predictor of interfacial residues than both, sequence conservation and an equivalent ‘unsupervised’ method that does not use interactome information. Availability and implementation http://csbg.cnb.csic.es/pazos/Xdet/. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Spanish Ministry of Economy and Competitiveness with European Regional Development Fund

Ramón Areces foundation

European Regional Development Fund

Institute of Health Carlos III

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3