Affiliation:
1. School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, GA 30332, United States
2. Paul G. Allen School of Computer Science & Engineering, University of Washington , Seattle, WA 98195, United States
Abstract
Abstract
Motivation
Despite the advances in sequencing technology, massive proteins with known sequences remain functionally unannotated. Biological network alignment (NA), which aims to find the node correspondence between species’ protein–protein interaction (PPI) networks, has been a popular strategy to uncover missing annotations by transferring functional knowledge across species. Traditional NA methods assumed that topologically similar proteins in PPIs are functionally similar. However, it was recently reported that functionally unrelated proteins can be as topologically similar as functionally related pairs, and a new data-driven or supervised NA paradigm has been proposed, which uses protein function data to discern which topological features correspond to functional relatedness.
Results
Here, we propose GraNA, a deep learning framework for the supervised NA paradigm for the pairwise NA problem. Employing graph neural networks, GraNA utilizes within-network interactions and across-network anchor links for learning protein representations and predicting functional correspondence between across-species proteins. A major strength of GraNA is its flexibility to integrate multi-faceted non-functional relationship data, such as sequence similarity and ortholog relationships, as anchor links to guide the mapping of functionally related proteins across species. Evaluating GraNA on a benchmark dataset composed of several NA tasks between different pairs of species, we observed that GraNA accurately predicted the functional relatedness of proteins and robustly transferred functional annotations across species, outperforming a number of existing NA methods. When applied to a case study on a humanized yeast network, GraNA also successfully discovered functionally replaceable human–yeast protein pairs that were documented in previous studies.
Availability and implementation
The code of GraNA is available at https://github.com/luo-group/GraNA.
Funder
Molecule Maker Lab Institute
2023 Amazon Research Award
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献