DockIT: a tool for interactive molecular docking and molecular complex construction

Author:

Iakovou Georgios12,Alhazzazi Mousa1,Hayward Steven1ORCID,Laycock Stephen D1

Affiliation:

1. School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK

2. Digital Engineering, Aviva Plc, Norwich, Norfolk NR1 3NS, UK

Abstract

Abstract Summary DockIT is a tool that has a unique set of physical and graphical features for interactive molecular docking. It enables the user to bring a ligand and a receptor into a docking pose by controlling relative position and orientation, either with a mouse and keyboard, or with a haptic device. Atomic interactions are modelled using molecular dynamics-based force-fields with the force on the ligand being felt on a haptic device. Real-time calculation and display of intermolecular hydrogen bonds and multipoint collision detection either using maximum force or maximum atomic overlap, mean that together with the ability to monitor selected intermolecular atomic distances, the user can find physically feasible docking poses that satisfy distance constraints derived from experimental methods. With these features and the ability to output and reload docked structures it can be used to accurately build up large multi-component molecular systems in preparation for molecular dynamics simulation. Availability and implementation DockIT is available free of charge for non-commercial use at http://www.haptimol.co.uk/downloads.htm. It requires a windows computer with GPU that supports OpenCL 1.2 and OpenGL 4.0. It may be used with a mouse and keyboard, or a haptic device from 3DSystems.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference20 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3