No means ‘No’: a non-improper modeling approach, with embedded speculative context

Author:

Tiwary Priya1ORCID,Madhubalan Akshayraj1,Gautam Amit1

Affiliation:

1. Saama AI Research Lab , Pune 411057, India

Abstract

Abstract Motivation The medical data are complex in nature as terms that appear in records usually appear in different contexts. Through this article, we investigate various bio model’s embeddings (BioBERT, BioELECTRA and PubMedBERT) on their understanding of ‘negation and speculation context’ wherein we found that these models were unable to differentiate ‘negated context’ versus ‘non-negated context’. To measure the understanding of models, we used cosine similarity scores of negated sentence embeddings versus non-negated sentence embeddings pairs. For improving these models, we introduce a generic super tuning approach to enhance the embeddings on ‘negation and speculation context’ by utilizing a synthesized dataset. Results After super-tuning the models, we can see that the model’s embeddings are now understanding negative and speculative contexts much better. Furthermore, we fine-tuned the super-tuned models on various tasks and we found that the model has outperformed the previous models and achieved state-of-the-art on negation, speculation cue and scope detection tasks on BioScope abstracts and Sherlock dataset. We also confirmed that our approach had a very minimal trade-off in the performance of the model in other tasks like natural language inference after super-tuning. Availability and implementation The source code, data and the models are available at: https://github.com/comprehend/engg-ai-research/tree/uncertainty-super-tuning.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contextualized medication event extraction with levitated markers;Journal of Biomedical Informatics;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3