TopicNet: a framework for measuring transcriptional regulatory network change

Author:

Lou Shaoke1,Li Tianxiao2,Kong Xiangmeng1,Zhang Jing1,Liu Jason1,Lee Donghoon1,Gerstein Mark1

Affiliation:

1. Department of Molecular Biophysics and Biochemistry

2. Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA

Abstract

Abstract Motivation Recently, many chromatin immunoprecipitation sequencing experiments have been carried out for a diverse group of transcription factors (TFs) in many different types of human cells. These experiments manifest large-scale and dynamic changes in regulatory network connectivity (i.e. network ‘rewiring’), highlighting the different regulatory programs operating in disparate cellular states. However, due to the dense and noisy nature of current regulatory networks, directly comparing the gains and losses of targets of key TFs across cell states is often not informative. Thus, here, we seek an abstracted, low-dimensional representation to understand the main features of network change. Results We propose a method called TopicNet that applies latent Dirichlet allocation to extract functional topics for a collection of genes regulated by a given TF. We then define a rewiring score to quantify regulatory-network changes in terms of the topic changes for this TF. Using this framework, we can pinpoint particular TFs that change greatly in network connectivity between different cellular states (such as observed in oncogenesis). Also, incorporating gene expression data, we define a topic activity score that measures the degree to which a given topic is active in a particular cellular state. And we show how activity differences can indicate differential survival in various cancers. Availability and Implementation The TopicNet framework and related analysis were implemented using R and all codes are available at https://github.com/gersteinlab/topicnet. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Human Genome Research Institute

NHGRI

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3