HyperGen: compact and efficient genome sketching using hyperdimensional vectors

Author:

Xu Weihong1ORCID,Hsu Po-Kai2,Moshiri Niema1,Yu Shimeng2,Rosing Tajana1

Affiliation:

1. Department of Computer Science and Engineering, University of California San Diego , La Jolla, CA 92093, United States

2. School of Electrical and Computer Engineering, Georgia Institute of Technology , Atlanta, GA 30332, United States

Abstract

Abstract Motivation Genomic distance estimation is a critical workload since exact computation for whole-genome similarity metrics such as Average Nucleotide Identity (ANI) incurs prohibitive runtime overhead. Genome sketching is a fast and memory-efficient solution to estimate ANI similarity by distilling representative k-mers from the original sequences. In this work, we present HyperGen that improves accuracy, runtime performance, and memory efficiency for large-scale ANI estimation. Unlike existing genome sketching algorithms that convert large genome files into discrete k-mer hashes, HyperGen leverages the emerging hyperdimensional computing (HDC) to encode genomes into quasi-orthogonal vectors (Hypervector, HV) in high-dimensional space. HV is compact and can preserve more information, allowing for accurate ANI estimation while reducing required sketch sizes. In particular, the HV sketch representation in HyperGen allows efficient ANI estimation using vector multiplication, which naturally benefits from highly optimized general matrix multiply (GEMM) routines. As a result, HyperGen enables the efficient sketching and ANI estimation for massive genome collections. Results We evaluate HyperGen’s sketching and database search performance using several genome datasets at various scales. HyperGen is able to achieve comparable or superior ANI estimation error and linearity compared to other sketch-based counterparts. The measurement results show that HyperGen is one of the fastest tools for both genome sketching and database search. Meanwhile, HyperGen produces memory-efficient sketch files while ensuring high ANI estimation accuracy. Availability and implementation A Rust implementation of HyperGen is freely available under the MIT license as an open-source software project at https://github.com/wh-xu/Hyper-Gen. The scripts to reproduce the experimental results can be accessed at https://github.com/wh-xu/experiment-hyper-gen.

Funder

Center for Processing with Intelligent Storage and Memory

Publisher

Oxford University Press (OUP)

Reference40 articles.

1. Dashing: fast and accurate genomic distances with hyperloglog;Baker;Genome Biol,2019

2. Genomic sketching with multiplicities and locality-sensitive hashing using dashing 2;Baker;Genome Res,2023

3. sourmash: a library for minhash sketching of DNA;Brown;JOSS,2016

4. Gtdb-tk v2: memory friendly classification with the genome taxonomy database;Chaumeil;Bioinformatics,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3