popDMS infers mutation effects from deep mutational scanning data

Author:

Hong Zhenchen1,Shimagaki Kai S2,Barton John P123

Affiliation:

1. University of California Department of Physics and Astronomy, , Riverside, CA USA

2. University of Pittsburgh School of Medicine Department of Computational and Systems Biology, , PA USA

3. University of Pittsburgh Department of Physics and Astronomy, , PA USA

Abstract

Abstract Summary Deep mutational scanning (DMS) experiments provide a powerful method to measure the functional effects of genetic mutations at massive scales. However, the data generated from these experiments can be difficult to analyze, with significant variation between experimental replicates. To overcome this challenge, we developed popDMS, a computational method based on population genetics theory, to infer the functional effects of mutations from DMS data. Through extensive tests, we found that the functional effects of single mutations and epistasis inferred by popDMS are highly consistent across replicates, comparing favorably with existing methods. Our approach is flexible and can be widely applied to DMS data that includes multiple time points, multiple replicates, and different experimental conditions. Availability and Implementation PopDMS is implemented in Python and Julia, and is freely available on GitHub at https://github.com/bartonlab/popDMS. Supplementary information Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3