ganon: precise metagenomics classification against large and up-to-date sets of reference sequences

Author:

Piro Vitor C123,Dadi Temesgen H4,Seiler Enrico4,Reinert Knut4,Renard Bernhard Y13

Affiliation:

1. Bioinformatics Unit (MF1), Robert Koch Institute, Berlin 13353, Germany

2. CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil

3. Data Analytics and Computational Statistics, Hasso Plattner Insititute, Digital Engineering Faculty, University of Potsdam, Potsdam 14482, Germany

4. Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany

Abstract

Abstract Motivation The exponential growth of assembled genome sequences greatly benefits metagenomics studies. However, currently available methods struggle to manage the increasing amount of sequences and their frequent updates. Indexing the current RefSeq can take days and hundreds of GB of memory on large servers. Few methods address these issues thus far, and even though many can theoretically handle large amounts of references, time/memory requirements are prohibitive in practice. As a result, many studies that require sequence classification use often outdated and almost never truly up-to-date indices. Results Motivated by those limitations, we created ganon, a k-mer-based read classification tool that uses Interleaved Bloom Filters in conjunction with a taxonomic clustering and a k-mer counting/filtering scheme. Ganon provides an efficient method for indexing references, keeping them updated. It requires <55 min to index the complete RefSeq of bacteria, archaea, fungi and viruses. The tool can further keep these indices up-to-date in a fraction of the time necessary to create them. Ganon makes it possible to query against very large reference sets and therefore it classifies significantly more reads and identifies more species than similar methods. When classifying a high-complexity CAMI challenge dataset against complete genomes from RefSeq, ganon shows strongly increased precision with equal or better sensitivity compared with state-of-the-art tools. With the same dataset against the complete RefSeq, ganon improved the F1-score by 65% at the genus level. It supports taxonomy- and assembly-level classification, multiple indices and hierarchical classification. Availability and implementation The software is open-source and available at: https://gitlab.com/rki_bioinformatics/ganon. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

CAPES - Ciência sem Fronteiras

BMBF

German Network for Bioinformatics Infrastructure

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3