Time-efficient filtering of imaging polarimetric data by checking physical realizability of experimental Mueller matrices

Author:

Novikova Tatiana12ORCID,Ovchinnikov Alexey34,Pogudin Gleb5ORCID,Ramella-Roman Jessica C26

Affiliation:

1. LPICM, CNRS, Ecole Polytechnique, IP Paris , Palaiseau, 91120, France

2. Department of Biomedical Engineering, Florida International University , Miami, FL , 33174, United States

3. Department of Mathematics, CUNY Queens College , 65-30 Kissena Blvd , Queens, NY, 11367, United States

4. Ph.D. Programs in Mathematics and Computer Science, CUNY Graduate Center , 365 Fifth Avenue , New York, NY, 10016, United States

5. Laboratoire d’informatique, CNRS, Ecole Polytechnique, IP Paris , Palaiseau, 91120, France

6. Herbert Wertheim College of Medicine, Florida International University , Miami, FL, 33199, United States

Abstract

Abstract Motivation Imaging Mueller polarimetry has already proved its potential for biomedicine, remote sensing, and metrology. The real-time applications of this modality require both video rate image acquisition and fast data post-processing algorithms. First, one must check the physical realizability of the experimental Mueller matrices in order to filter out non-physical data, i.e. to test the positive semi-definiteness of the 4 × 4 Hermitian coherency matrix calculated from the elements of corresponding Mueller matrix pixel-wise. For this purpose, we compared the execution time for the calculations of (i) eigenvalues, (ii) Cholesky decomposition, (iii) Sylvester’s criterion, and (iv) coefficients of the characteristic polynomial (two different approaches) of the Hermitian coherency matrix, all calculated for the experimental Mueller matrix images (600 pixels × 700 pixels) of mouse uterine cervix. The calculations were performed using C++ and Julia programming languages. Results Our results showed the superiority of the algorithm (iv) based on the simplification via Pauli matrices over other algorithms for our dataset. The sequential implementation of latter algorithm on a single core already satisfies the requirements of real-time polarimetric imaging. This can be further amplified by the proposed parallelization (e.g. we achieve a 5-fold speed up on six cores). Availability and implementation The source codes of the algorithms and experimental data are available at https://github.com/pogudingleb/mueller_matrices.

Funder

Swiss National Science Foundation

European Metrology Programme for Innovation and Research

National Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3