mixtureS: a novel tool for bacterial strain genome reconstruction from reads

Author:

Li Xin1,Hu Haiyan1,Li Xiaoman2

Affiliation:

1. Department of Computer Science

2. Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32816, USA

Abstract

Abstract Motivation It is essential to study bacterial strains in environmental samples. Existing methods and tools often depend on known strains or known variations, cannot work on individual samples, not reliable, or not easy to use, etc. It is thus important to develop more user-friendly tools that can identify bacterial strains more accurately. Results We developed a new tool called mixtureS that can de novo identify bacterial strains from shotgun reads of a clonal or metagenomic sample, without prior knowledge about the strains and their variations. Tested on 243 simulated datasets and 195 experimental datasets, mixtureS reliably identified the strains, their numbers and their abundance. Compared with three tools, mixtureS showed better performance in almost all simulated datasets and the vast majority of experimental datasets. Availability and implementation The source code and tool mixtureS is available at http://www.cs.ucf.edu/˜xiaoman/mixtureS/. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Science Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference18 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3