Seqpac: a framework for sRNA-seq analysis in R using sequence-based counts

Author:

Skog Signe1,Örkenby Lovisa1,Kugelberg Unn1,Öst Anita1,Nätt Daniel1ORCID

Affiliation:

1. Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linkoping University , Linkoping SE-58185, Sweden

Abstract

Abstract Motivation Feature-based counting is commonly used in RNA-sequencing (RNA-seq) analyses. Here, sequences must align to target features (like genes or non-coding RNAs) and related sequences with different compositions are counted into the same feature. Consequently, sequence integrity is lost, making results less traceable against raw data. Small RNA (sRNA) often maps to multiple features and shows an incredible diversity in form and function. Therefore, applying feature-based strategies may increase the risk of misinterpretation. We present a strategy for sRNA-seq analysis that preserves the integrity of the raw sequence making the data lineage fully traceable. We have consolidated this strategy into Seqpac: An R package that makes a complete sRNA analysis available on multiple platforms. Using published biological data, we show that Seqpac reveals hidden bias and adds new insights to studies that were previously analyzed using feature-based counting. We have identified limitations in the concurrent analysis of RNA-seq data. We call it the traceability dilemma in alignment-based sequencing strategies. By building a flexible framework that preserves the integrity of the read sequence throughout the analysis, we demonstrate better interpretability in sRNA-seq experiments, which are particularly vulnerable to this problem. Applying similar strategies to other transcriptomic workflows may aid in resolving the replication crisis experienced by many fields that depend on transcriptome analyses. Availability and implementation Seqpac is available on Bioconductor (https://bioconductor.org/packages/seqpac) and GitHub (https://github.com/danis102/seqpac).

Funder

Swedish Research Council

Knut and Alice Wallenberg Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3