BERT-GT: cross-sentence n-ary relation extraction with BERT and Graph Transformer

Author:

Lai Po-Ting1ORCID,Lu Zhiyong1ORCID

Affiliation:

1. National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA

Abstract

Abstract Motivation A biomedical relation statement is commonly expressed in multiple sentences and consists of many concepts, including gene, disease, chemical and mutation. To automatically extract information from biomedical literature, existing biomedical text-mining approaches typically formulate the problem as a cross-sentence n-ary relation-extraction task that detects relations among n entities across multiple sentences, and use either a graph neural network (GNN) with long short-term memory (LSTM) or an attention mechanism. Recently, Transformer has been shown to outperform LSTM on many natural language processing (NLP) tasks. Results In this work, we propose a novel architecture that combines Bidirectional Encoder Representations from Transformers with Graph Transformer (BERT-GT), through integrating a neighbor–attention mechanism into the BERT architecture. Unlike the original Transformer architecture, which utilizes the whole sentence(s) to calculate the attention of the current token, the neighbor–attention mechanism in our method calculates its attention utilizing only its neighbor tokens. Thus, each token can pay attention to its neighbor information with little noise. We show that this is critically important when the text is very long, as in cross-sentence or abstract-level relation-extraction tasks. Our benchmarking results show improvements of 5.44% and 3.89% in accuracy and F1-measure over the state-of-the-art on n-ary and chemical-protein relation datasets, suggesting BERT-GT is a robust approach that is applicable to other biomedical relation extraction tasks or datasets. Availability and implementation the source code of BERT-GT will be made freely available at https://github.com/ncbi/bert_gt upon publication. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

NIH Intramural Research Program

National Library of Medicine

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3