NanoCLUST: a species-level analysis of 16S rRNA nanopore sequencing data

Author:

Rodríguez-Pérez Héctor1,Ciuffreda Laura1,Flores Carlos1234ORCID

Affiliation:

1. Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, 38010, Spain

2. Instituto de Salud Carlos III, CIBER de Enfermedades Respiratorias, Madrid, 28029, Spain

3. Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Granadilla, Santa Cruz de Tenerife, Spain

4. Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain

Abstract

Abstract Summary NanoCLUST is an analysis pipeline for the classification of amplicon-based full-length 16S rRNA nanopore reads. It is characterized by an unsupervised read clustering step, based on Uniform Manifold Approximation and Projection (UMAP), followed by the construction of a polished read and subsequent Blast classification. Here, we demonstrate that NanoCLUST performs better than other state-of-the-art software in the characterization of two commercial mock communities, enabling accurate bacterial identification and abundance profile estimation at species-level resolution. Availability and implementation Source code, test data and documentation of NanoCLUST are freely available at https://github.com/genomicsITER/NanoCLUST under MIT License. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Instituto de Salud Carlos III

European Regional Development Funds

European Union; Ministerio de Ciencia e Innovación

Cabildo Insular de Tenerife

Fundación Canaria Instituto de Investigación Sanitaria de Canarias

Instituto Tecnológico y de Energías Renovables

Genomics, Personalized Medicine and Biotechnology

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3