PIntMF: Penalized Integrative Matrix Factorization method for multi-omics data

Author:

Pierre-Jean Morgane1ORCID,Mauger Florence1,Deleuze Jean-François1ORCID,Le Floch Edith1

Affiliation:

1. Centre National de Recherche en Génomique Humaine, CEA, Université de Paris-Saclay, Evry, France

Abstract

Abstract Motivation It is more and more common to perform multi-omics analyses to explore the genome at diverse levels and not only at a single level. Through integrative statistical methods, multi-omics data have the power to reveal new biological processes, potential biomarkers and subgroups in a cohort. Matrix factorization (MF) is an unsupervised statistical method that allows a clustering of individuals, but also reveals relevant omics variables from the various blocks. Results Here, we present PIntMF (Penalized Integrative Matrix Factorization), an MF model with sparsity, positivity and equality constraints. To induce sparsity in the model, we used a classical Lasso penalization on variable and individual matrices. For the matrix of samples, sparsity helps in the clustering, while normalization (matching an equality constraint) of inferred coefficients is added to improve interpretation. Moreover, we added an automatic tuning of the sparsity parameters using the famous glmnet package. We also proposed three criteria to help the user to choose the number of latent variables. PIntMF was compared with other state-of-the-art integrative methods including feature selection techniques in both synthetic and real data. PIntMF succeeds in finding relevant clusters as well as variables in two types of simulated data (correlated and uncorrelated). Next, PIntMF was applied to two real datasets (Diet and cancer), and it revealed interpretable clusters linked to available clinical data. Our method outperforms the existing ones on two criteria (clustering and variable selection). We show that PIntMF is an easy, fast and powerful tool to extract patterns and cluster samples from multi-omics data. Availability and implementation An R package is available at https://github.com/mpierrejean/pintmf. Supplementary information Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference47 articles.

1. Methods for the integration of multi-omics data: mathematical aspects;Bersanelli;BMC Bioinformatics,2016

2. Multi-omics of single cells: strategies and applications;Bock;Trends Biotechnol,2016

3. Metagenes and molecular pattern discovery using matrix factorization;Brunet;Proc. Nat. Acad. Sci. USA,2004

4. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer;Burstein;Clin. Cancer Res,2015

5. Benchmarking joint multi-omics dimensionality reduction approaches for cancer study;Cantini;Nat. Commun,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3