Topological approximate Bayesian computation for parameter inference of an angiogenesis model

Author:

Thorne Thomas1ORCID,Kirk Paul D W234ORCID,Harrington Heather A56ORCID

Affiliation:

1. Department of Computer Science, University of Surrey , Guildford GU2 7XH, UK

2. MRC Biostatistics Unit, University of Cambridge , Cambridge CB2 0SR, UK

3. Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge , Cambridge CB2 0AW, UK

4. Cancer Research UK Cambridge Centre, Ovarian Cancer Programme , Cambridge CB2 0RE, UK

5. Mathematical Institute, University of Oxford , Oxford OX2 6GG, UK

6. Wellcome Centre for Human Genetics, University of Oxford , Oxford OX3 7BN, UK

Abstract

Abstract Motivation Inferring the parameters of models describing biological systems is an important problem in the reverse engineering of the mechanisms underlying these systems. Much work has focused on parameter inference of stochastic and ordinary differential equation models using Approximate Bayesian Computation (ABC). While there is some recent work on inference in spatial models, this remains an open problem. Simultaneously, advances in topological data analysis (TDA), a field of computational mathematics, have enabled spatial patterns in data to be characterized. Results Here, we focus on recent work using TDA to study different regimes of parameter space for a well-studied model of angiogenesis. We propose a method for combining TDA with ABC to infer parameters in the Anderson–Chaplain model of angiogenesis. We demonstrate that this topological approach outperforms ABC approaches that use simpler statistics based on spatial features of the data. This is a first step toward a general framework of spatial parameter inference for biological systems, for which there may be a variety of filtrations, vectorizations and summary statistics to be considered. Availability and implementation All code used to produce our results is available as a Snakemake workflow from github.com/tt104/tabc_angio.

Funder

Medical Research Council

National Institute for Health Research (Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust) to P.D.W.K

NHS, the NIHR or the Department of Health and Social Care

EPSRC

Royal Society

Emerson Collective

RESCUER project

European Union’s Horizon 2020 research and innovation programme

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference55 articles.

1. Persistence images: a stable vector representation of persistent homology;Adams;J. Mach. Learn. Res,2017

2. Extreme elevation on a 2-manifold;Agarwal;Discrete Comput. Geometry,2006

3. Continuous and discrete mathematical models of tumor-induced angiogenesis;Anderson;Bull. Math. Biol,1998

4. On the stability of persistent entropy and new summary functions for topological data analysis;Atienza;Pattern Recognit,2020

5. Approximate Bayesian computation in population genetics;Beaumont;Genetics,2002

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3