CHRONOS: a time-varying method for microRNA-mediated subpathway enrichment analysis

Author:

Vrahatis Aristidis G.12,Dimitrakopoulou Konstantina3,Balomenos Panos12,Tsakalidis Athanasios K.1,Bezerianos Anastasios24

Affiliation:

1. Department of Computer Engineering and Informatics,

2. Department of Medical Physics, School of Medicine, University of Patras, Patras 26500, Greece,

3. Centre for Cancer Biomarkers CCBIO and Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway and

4. SINAPSE Institute, Center of Life Sciences, National University of Singapore, Singapore 117456

Abstract

Abstract Motivation: In the era of network medicine and the rapid growth of paired time series mRNA/microRNA expression experiments, there is an urgent need for pathway enrichment analysis methods able to capture the time- and condition-specific ‘active parts’ of the biological circuitry as well as the microRNA impact. Current methods ignore the multiple dynamical ‘themes’—in the form of enriched biologically relevant microRNA-mediated subpathways—that determine the functionality of signaling networks across time. Results: To address these challenges, we developed time-vaRying enriCHment integrOmics Subpathway aNalysis tOol (CHRONOS) by integrating time series mRNA/microRNA expression data with KEGG pathway maps and microRNA-target interactions. Specifically, microRNA-mediated subpathway topologies are extracted and evaluated based on the temporal transition and the fold change activity of the linked genes/microRNAs. Further, we provide measures that capture the structural and functional features of subpathways in relation to the complete organism pathway atlas. Our application to synthetic and real data shows that CHRONOS outperforms current subpathway-based methods into unraveling the inherent dynamic properties of pathways. Availability and implementation: CHRONOS is freely available at http://biosignal.med.upatras.gr/chronos/. Contact: tassos.bezerianos@nus.edu.sg. Supplementary information: Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3