Powerful and interpretable control of false discoveries in two-group differential expression studies

Author:

Enjalbert-Courrech Nicolas1,Neuvial Pierre1ORCID

Affiliation:

1. Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS , F-31062 Toulouse Cedex 9, France

Abstract

Abstract Motivation The standard approach for statistical inference in differential expression (DE) analyses is to control the false discovery rate (FDR). However, controlling the FDR does not in fact imply that the proportion of false discoveries is upper bounded. Moreover, no statistical guarantee can be given on subsets of genes selected by FDR thresholding. These known limitations are overcome by post hoc inference, which provides guarantees of the number of proportion of false discoveries among arbitrary gene selections. However, post hoc inference methods are not yet widely used for DE studies. Results In this article, we demonstrate the relevance and illustrate the performance of adaptive interpolation-based post hoc methods for two-group DE studies. First, we formalize the use of permutation-based methods to obtain sharp confidence bounds that are adaptive to the dependence between genes. Then, we introduce a generic linear time algorithm for computing post hoc bounds, making these bounds applicable to large-scale two-group DE studies. The use of the resulting Adaptive Simes bound is illustrated on a RNA sequencing study. Comprehensive numerical experiments based on real microarray and RNA sequencing data demonstrate the statistical performance of the method. Availability and implementation A cross-platform open source implementation within the R package sanssouci is available at https://sanssouci-org.github.io/sanssouci/. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Fondation Catalyses at Université Paul Sabatier

Mission for Transversal and Interdisciplinary Initiatives

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference29 articles.

1. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J. R. Stat. Soc. Ser. B (Methodological),1995

2. The control of the false discovery rate in multiple testing under dependency;Benjamini;Ann. Stat,2001

3. Notip: non-parametric true discovery proportion control for brain imaging;Blain;Neuroimage,2022

4. Post hoc confidence bounds on false positives using reference families;Blanchard;Ann. Stat,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reconstitution of early paclitaxel biosynthetic network;Nature Communications;2024-02-15

2. Fudging the volcano-plot without dredging the data;Nature Communications;2024-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3