Integrative analysis of multi-omics data for discovering low-frequency variants associated with low-density lipoprotein cholesterol levels

Author:

Yang Tianzhong1ORCID,Wei Peng2ORCID,Pan Wei1

Affiliation:

1. Department of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA

2. Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

Abstract

Abstract Motivation The abundance of omics data has facilitated integrative analyses of single and multiple molecular layers with genome-wide association studies focusing on common variants. Built on its successes, we propose a general analysis framework to leverage multi-omics data with sequencing data to improve the statistical power of discovering new associations and understanding of the disease susceptibility due to low-frequency variants. The proposed test features its robustness to model misspecification, high power across a wide range of scenarios and the potential of offering insights into the underlying genetic architecture and disease mechanisms. Results Using the Framingham Heart Study data, we show that low-frequency variants are predictive of DNA methylation, even after conditioning on the nearby common variants. In addition, DNA methylation and gene expression provide complementary information to functional genomics. In the Avon Longitudinal Study of Parents and Children with a sample size of 1497, one gene CLPTM1 is identified to be associated with low-density lipoprotein cholesterol levels by the proposed powerful adaptive gene-based test integrating information from gene expression, methylation and enhancer–promoter interactions. It is further replicated in the TwinsUK study with 1706 samples. The signal is driven by both low-frequency and common variants. Availability and implementation Models are available at https://github.com/ytzhong/DNAm. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3