An Ensemble Spectral Prediction (ESP) model for metabolite annotation

Author:

Li Xinmeng1,Zhou Chen Yan1,Kalia Apurva1,Zhu Hao1ORCID,Liu Li-ping1,Hassoun Soha12ORCID

Affiliation:

1. Department of Computer Science, Tufts University , Medford, MA, 02155, United States

2. Department of Chemical and Biological Engineering, Tufts University , Medford, MA, 02155, United States

Abstract

Abstract Motivation A key challenge in metabolomics is annotating measured spectra from a biological sample with chemical identities. Currently, only a small fraction of measurements can be assigned identities. Two complementary computational approaches have emerged to address the annotation problem: mapping candidate molecules to spectra, and mapping query spectra to molecular candidates. In essence, the candidate molecule with the spectrum that best explains the query spectrum is recommended as the target molecule. Despite candidate ranking being fundamental in both approaches, limited prior works incorporated rank learning tasks in determining the target molecule. Results We propose a novel machine learning model, Ensemble Spectral Prediction (ESP), for metabolite annotation. ESP takes advantage of prior neural network-based annotation models that utilize multilayer perceptron (MLP) networks and Graph Neural Networks (GNNs). Based on the ranking results of the MLP- and GNN-based models, ESP learns a weighting for the outputs of MLP and GNN spectral predictors to generate a spectral prediction for a query molecule. Importantly, training data is stratified by molecular formula to provide candidate sets during model training. Further, baseline MLP and GNN models are enhanced by considering peak dependencies through label mixing and multi-tasking on spectral topic distributions. When trained on the NIST 2020 dataset and evaluated on the relevant candidate sets from PubChem, ESP improves average rank by 23.7% and 37.2% over the MLP and GNN baselines, respectively, demonstrating performance gain over state-of-the-art neural network approaches. However, MLP approaches remain strong contenders when considering top five ranks. Importantly, we show that annotation performance is dependent on the training dataset, the number of molecules in the candidate set and candidate similarity to the target molecule. Availability and implementation The ESP code, a trained model, and a Jupyter notebook that guide users on using the ESP tool is available at https://github.com/HassounLab/ESP.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3