Affiliation:
1. Department of Computer Science, Purdue University, West Lafayette, IN, USA
2. Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
Abstract
Abstract
Motivation
Function annotation of proteins is fundamental in contemporary biology across fields including genomics, molecular biology, biochemistry, systems biology and bioinformatics. Function prediction is indispensable in providing clues for interpreting omics-scale data as well as in assisting biologists to build hypotheses for designing experiments. As sequencing genomes is now routine due to the rapid advancement of sequencing technologies, computational protein function prediction methods have become increasingly important. A conventional method of annotating a protein sequence is to transfer functions from top hits of a homology search; however, this approach has substantial short comings including a low coverage in genome annotation.
Results
Here we have developed Phylo-PFP, a new sequence-based protein function prediction method, which mines functional information from a broad range of similar sequences, including those with a low sequence similarity identified by a PSI-BLAST search. To evaluate functional similarity between identified sequences and the query protein more accurately, Phylo-PFP reranks retrieved sequences by considering their phylogenetic distance. Compared to the Phylo-PFP’s predecessor, PFP, which was among the top ranked methods in the second round of the Critical Assessment of Functional Annotation (CAFA2), Phylo-PFP demonstrated substantial improvement in prediction accuracy. Phylo-PFP was further shown to outperform prediction programs to date that were ranked top in CAFA2.
Availability and implementation
Phylo-PFP web server is available for at http://kiharalab.org/phylo_pfp.php.
Supplementary information
Supplementary data are available at Bioinformatics online.
Funder
Office of the Director of National Intelligence
Intelligence Advanced Research Projects Activity
Army Research Office
National Science Foundation
National Institutes of Health
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献