Phylo-PFP: improved automated protein function prediction using phylogenetic distance of distantly related sequences

Author:

Jain Aashish1,Kihara Daisuke12ORCID

Affiliation:

1. Department of Computer Science, Purdue University, West Lafayette, IN, USA

2. Department of Biological Sciences, Purdue University, West Lafayette, IN, USA

Abstract

Abstract Motivation Function annotation of proteins is fundamental in contemporary biology across fields including genomics, molecular biology, biochemistry, systems biology and bioinformatics. Function prediction is indispensable in providing clues for interpreting omics-scale data as well as in assisting biologists to build hypotheses for designing experiments. As sequencing genomes is now routine due to the rapid advancement of sequencing technologies, computational protein function prediction methods have become increasingly important. A conventional method of annotating a protein sequence is to transfer functions from top hits of a homology search; however, this approach has substantial short comings including a low coverage in genome annotation. Results Here we have developed Phylo-PFP, a new sequence-based protein function prediction method, which mines functional information from a broad range of similar sequences, including those with a low sequence similarity identified by a PSI-BLAST search. To evaluate functional similarity between identified sequences and the query protein more accurately, Phylo-PFP reranks retrieved sequences by considering their phylogenetic distance. Compared to the Phylo-PFP’s predecessor, PFP, which was among the top ranked methods in the second round of the Critical Assessment of Functional Annotation (CAFA2), Phylo-PFP demonstrated substantial improvement in prediction accuracy. Phylo-PFP was further shown to outperform prediction programs to date that were ranked top in CAFA2. Availability and implementation Phylo-PFP web server is available for at http://kiharalab.org/phylo_pfp.php. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Office of the Director of National Intelligence

Intelligence Advanced Research Projects Activity

Army Research Office

National Science Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3