PredGCN: a Pruning-enabled Gene-Cell Net for automatic cell annotation of single cell transcriptome data

Author:

Qi Qi1,Wang Yunhe2,Huang Yujian3,Fan Yi1ORCID,Li Xiangtao1ORCID

Affiliation:

1. School of Artificial Intelligence, Jilin University , Changchun 130012, China

2. School of Artificial Intelligence, Hebei University of Technology , Tianjin 300401, China

3. College of Computer Science and Cyber Security, Chengdu University of Technology , Chengdu 610059, China

Abstract

Abstract Motivation The annotation of cell types from single-cell transcriptomics is essential for understanding the biological identity and functionality of cellular populations. Although manual annotation remains the gold standard, the advent of automatic pipelines has become crucial for scalable, unbiased, and cost-effective annotations. Nonetheless, the effectiveness of these automatic methods, particularly those employing deep learning, significantly depends on the architecture of the classifier and the quality and diversity of the training datasets. Results To address these limitations, we present a Pruning-enabled Gene-Cell Net (PredGCN) incorporating a Coupled Gene-Cell Net (CGCN) to enable representation learning and information storage. PredGCN integrates a Gene Splicing Net (GSN) and a Cell Stratification Net (CSN), employing a pruning operation (PrO) to dynamically tackle the complexity of heterogeneous cell identification. Among them, GSN leverages multiple statistical and hypothesis-driven feature extraction methods to selectively assemble genes with specificity for scRNA-seq data while CSN unifies elements based on diverse region demarcation principles, exploiting the representations from GSN and precise identification from different regional homogeneity perspectives. Furthermore, we develop a multi-objective Pareto pruning operation (Pareto PrO) to expand the dynamic capabilities of CGCN, optimizing the sub-network structure for accurate cell type annotation. Multiple comparison experiments on real scRNA-seq datasets from various species have demonstrated that PredGCN surpasses existing state-of-the-art methods, including its scalability to cross-species datasets. Moreover, PredGCN can uncover unknown cell types and provide functional genomic analysis by quantifying the influence of genes on cell clusters, bringing new insights into cell type identification and characterizing scRNA-seq data from different perspectives. Availability and implementation The source code is available at https://github.com/IrisQi7/PredGCN and test data is available at https://figshare.com/articles/dataset/PredGCN/25251163.

Funder

National Natural Science Foundation of China

Jilin Province Outstanding Young Scientist Program

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3