Set cover-based methods for motif selection

Author:

Li Yichao1ORCID,Liu Yating1,Juedes David1,Drews Frank1,Bunescu Razvan1,Welch Lonnie1

Affiliation:

1. Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA

Abstract

Abstract Motivation De novo motif discovery algorithms find statistically over-represented sequence motifs that may function as transcription factor binding sites. Current methods often report large numbers of motifs, making it difficult to perform further analyses and experimental validation. The motif selection problem seeks to identify a minimal set of putative regulatory motifs that characterize sequences of interest (e.g. ChIP-Seq binding regions). Results In this study, the motif selection problem is mapped to variants of the set cover problem that are solved via tabu search and by relaxed integer linear programing (RILP). The algorithms are employed to analyze 349 ChIP-Seq experiments from the ENCODE project, yielding a small number of high-quality motifs that represent putative binding sites of primary factors and cofactors. Specifically, when compared with the motifs reported by Kheradpour and Kellis, the set cover-based algorithms produced motif sets covering 35% more peaks for 11 TFs and identified 4 more putative cofactors for 6 TFs. Moreover, a systematic evaluation using nested cross-validation revealed that the RILP algorithm selected fewer motifs and was able to cover 6% more peaks and 3% fewer background regions, which reduced the error rate by 7%. Availability and implementation The source code of the algorithms and all the datasets are available at https://github.com/YichaoOU/Set_cover_tools. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Graduate Education and Research Board Program of Ohio University

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference49 articles.

1. Discovering gene regulatory elements using coverage-based heuristics;Al-Ouran;IEEE/ACM Trans. Comput. Biol. Bioinformatics,2018

2. Fitting a mixture model by expectation maximization to discover motifs in bipolymers;Bailey,1994

3. Fast index based algorithms and software for matching position specific scoring matrices;Beckstette;BMC Bioinformatics,2006

4. Members of the meis1 and pbx homeodomain protein families cooperatively bind a camp-responsive sequence (crs1) from bovinecyp17;Bischof;J. Biol. Chem,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved immune algorithm for sudden cardiac death first aid drones site selection;International Journal of Medical Informatics;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3