Affiliation:
1. Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
Abstract
Abstract
Motivation
Evolution of cancer is driven by few somatic mutations that disrupt cellular processes, causing abnormal proliferation and tumor development, while most somatic mutations have no impact on progression. Distinguishing those mutated genes that drive tumorigenesis in a patient is a primary goal in cancer therapy: Knowledge of these genes and the pathways on which they operate can illuminate disease mechanisms and indicate potential therapies and drug targets. Current research focuses mainly on cohort-level driver gene identification, but patient-specific driver gene identification remains a challenge.
Methods
We developed a new algorithm for patient-specific ranking of driver genes. The algorithm, called PRODIGY, analyzes the expression and mutation profiles of the patient along with data on known pathways and protein-protein interactions. Prodigy quantifies the impact of each mutated gene on every deregulated pathway using the prize collecting Steiner tree model. Mutated genes are ranked by their aggregated impact on all deregulated pathways.
Results
In testing on five TCGA cancer cohorts spanning >2500 patients and comparison to validated driver genes, Prodigy outperformed extant methods and ranking based on network centrality measures. Our results pinpoint the pleiotropic effect of driver genes and show that Prodigy is capable of identifying even very rare drivers. Hence, Prodigy takes a step further towards personalized medicine and treatment.
Availability
The Prodigy R package is available at: https://github.com/Shamir-Lab/PRODIGY.
Supplementary information
Supplementary data are available at Bioinformatics online.
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献