DeepLocRNA: an interpretable deep learning model for predicting RNA subcellular localization with domain-specific transfer-learning

Author:

Wang Jun1ORCID,Horlacher Marc2ORCID,Cheng Lixin3ORCID,Winther Ole145

Affiliation:

1. Bioinformatics Centre, Department of Biology, University of Copenhagen , København Ø 2100, Denmark

2. Computational Health Center, Helmholtz Center Munich , Neuherberg 85764, Germany

3. Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University , Shenzhen 518020, China

4. Center for Genomic Medicine, Rigshospitalet (Copenhagen University Hospital) , Copenhagen 2100, Denmark

5. Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark , Kongens Lyngby 2800, Denmark

Abstract

Abstract Motivation Accurate prediction of RNA subcellular localization plays an important role in understanding cellular processes and functions. Although post-transcriptional processes are governed by trans-acting RNA binding proteins (RBPs) through interaction with cis-regulatory RNA motifs, current methods do not incorporate RBP-binding information. Results In this article, we propose DeepLocRNA, an interpretable deep-learning model that leverages a pre-trained multi-task RBP-binding prediction model to predict the subcellular localization of RNA molecules via fine-tuning. We constructed DeepLocRNA using a comprehensive dataset with variant RNA types and evaluated it on the held-out dataset. Our model achieved state-of-the-art performance in predicting RNA subcellular localization in mRNA and miRNA. It has also demonstrated great generalization capabilities, performing well on both human and mouse RNA. Additionally, a motif analysis was performed to enhance the interpretability of the model, highlighting signal factors that contributed to the predictions. The proposed model provides general and powerful prediction abilities for different RNA types and species, offering valuable insights into the localization patterns of RNA molecules and contributing to our understanding of cellular processes at the molecular level. A user-friendly web server is available at: https://biolib.com/KU/DeepLocRNA/.

Funder

China Scholarship Council

Novo Nordisk Fonden

Danish National Research Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3