GraphGONet: a self-explaining neural network encapsulating the Gene Ontology graph for phenotype prediction on gene expression

Author:

Bourgeais Victoria1ORCID,Zehraoui Farida1,Hanczar Blaise1

Affiliation:

1. Computer Science Department, IBISC, Université Paris-Saclay (Univ. Évry) , Évry-Courcouronnes 91020, France

Abstract

Abstract Motivation Medical care is becoming more and more specific to patients’ needs due to the increased availability of omics data. The application to these data of sophisticated machine learning models, in particular deep learning (DL), can improve the field of precision medicine. However, their use in clinics is limited as their predictions are not accompanied by an explanation. The production of accurate and intelligible predictions can benefit from the inclusion of domain knowledge. Therefore, knowledge-based DL models appear to be a promising solution. Results In this article, we propose GraphGONet, where the Gene Ontology is encapsulated in the hidden layers of a new self-explaining neural network. Each neuron in the layers represents a biological concept, combining the gene expression profile of a patient and the information from its neighboring neurons. The experiments described in the article confirm that our model not only performs as accurately as the state-of-the-art (non-explainable ones) but also automatically produces stable and intelligible explanations composed of the biological concepts with the highest contribution. This feature allows experts to use our tool in a medical setting. Availability and implementation GraphGONet is freely available at https://forge.ibisc.univ-evry.fr/vbourgeais/GraphGONet.git. The microarray dataset is accessible from the ArrayExpress database under the identifier E-MTAB-3732. The TCGA datasets can be downloaded from the Genomic Data Commons (GDC) data portal. Supplementary information Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference28 articles.

1. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI;Barredo Arrieta;Inform. Fusion,2020

2. Deep GONet: self-explainable deep neural network based on gene ontology for phenotype prediction from gene expression data;Bourgeais;BMC Bioinform,2021

3. Convolutional neural networks on graphs with fast localized spectral filtering;Defferrard,2016

4. Experimental analysis of feature selection stability for high-dimension and low-sample size gene expression classification task;Dernoncourt;2012 IEEE 12th International Conference on Bioinformatics Bioengineering (BIBE),2012

5. Biologically informed deep neural network for prostate cancer discovery;Elmarakeby;Nature,2021

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3