Gene relevance based on multiple evidences in complex networks

Author:

Di Nanni Noemi12,Gnocchi Matteo1,Moscatelli Marco1,Milanesi Luciano1,Mosca Ettore1ORCID

Affiliation:

1. Department of Biomedical Sciences, Institute of Biomedical Technologies, National Research Council, Segrate (MI), Italy

2. Department of Industrial and Information Engineering, University of Pavia, Italy

Abstract

Abstract Motivation Multi-omics approaches offer the opportunity to reconstruct a more complete picture of the molecular events associated with human diseases, but pose challenges in data analysis. Network-based methods for the analysis of multi-omics leverage the complex web of macromolecular interactions occurring within cells to extract significant patterns of molecular alterations. Existing network-based approaches typically address specific combinations of omics and are limited in terms of the number of layers that can be jointly analysed. In this study, we investigate the application of network diffusion to quantify gene relevance on the basis of multiple evidences (layers). Results We introduce a gene score (mND) that quantifies the relevance of a gene in a biological process taking into account the network proximity of the gene and its first neighbours to other altered genes. We show that mND has a better performance over existing methods in finding altered genes in network proximity in one or more layers. We also report good performances in recovering known cancer genes. The pipeline described in this article is broadly applicable, because it can handle different types of inputs: in addition to multi-omics datasets, datasets that are stratified in many classes (e.g., cell clusters emerging from single cell analyses) or a combination of the two scenarios. Availability and implementation The R package ‘mND’ is available at URL: https://www.itb.cnr.it/mnd. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Italian Ministry of Education, University and Research

Flagship InterOmics PB05

PON ELIXIR CNR-BIOmics

Italian Ministry of Health

Fondazione Regionale per la Ricerca Biomedica

European Union’s Horizon 2020 research and innovation programme

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3