MARS: a motif-based autoregressive model for retrosynthesis prediction

Author:

Liu Jiahan123ORCID,Yan Chaochao4,Yu Yang5,Lu Chan5,Huang Junzhou4,Ou-Yang Le123ORCID,Zhao Peilin5

Affiliation:

1. College of Electronic and Information Engineering, Shenzhen University , Shenzhen 518060, Guangdong, China

2. Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University , Shenzhen 518060, Guangdong, China

3. Shenzhen Key Laboratory of Media Security and Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University , Shenzhen 518060, Guangdong, China

4. Computer Science and Engineering Department, University of Texas at Artlington , Arlington 76019, TX, United States

5. Tencent AI Lab , Shenzhen 518057, Guangdong, China

Abstract

Abstract Motivation Retrosynthesis is a critical task in drug discovery, aimed at finding a viable pathway for synthesizing a given target molecule. Many existing approaches frame this task as a graph-generating problem. Specifically, these methods first identify the reaction center, and break a targeted molecule accordingly to generate the synthons. Reactants are generated by either adding atoms sequentially to synthon graphs or by directly adding appropriate leaving groups. However, both of these strategies have limitations. Adding atoms results in a long prediction sequence that increases the complexity of generation, while adding leaving groups only considers those in the training set, which leads to poor generalization. Results In this paper, we propose a novel end-to-end graph generation model for retrosynthesis prediction, which sequentially identifies the reaction center, generates the synthons, and adds motifs to the synthons to generate reactants. Given that chemically meaningful motifs fall between the size of atoms and leaving groups, our model achieves lower prediction complexity than adding atoms and demonstrates superior performance than adding leaving groups. We evaluate our proposed model on a benchmark dataset and show that it significantly outperforms previous state-of-the-art models. Furthermore, we conduct ablation studies to investigate the contribution of each component of our proposed model to the overall performance on benchmark datasets. Experiment results demonstrate the effectiveness of our model in predicting retrosynthesis pathways and suggest its potential as a valuable tool in drug discovery. Availability and implementation All code and data are available at https://github.com/szu-ljh2020/MARS.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Program

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3