Phage protein receptors have multiple interaction partners and high expressions

Author:

Zhang Zheng1,Yu Fen1,Zou Yuanqiang2,Qiu Ye1,Wu Aiping34,Jiang Taijiao34,Peng Yousong1

Affiliation:

1. College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China

2. Changsha Qiangze Biotech Co., Ltd, Changsha 410000, China

3. Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China

4. Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China

Abstract

Abstract Motivation Receptors on host cells play a critical role in viral infection. How phages select receptors is still unknown. Results Here, we manually curated a high-quality database named phageReceptor, including 427 pairs of phage–host receptor interactions, 341 unique viral species or sub-species and 69 bacterial species. Sugars and proteins were most widely used by phages as receptors. The receptor usage of phages in Gram-positive bacteria was different from that in Gram-negative bacteria. Most protein receptors were located on the outer membrane. The phage protein receptors (PPRs) were highly diverse in their structures, and had little sequence identity and no common protein domain with mammalian virus receptors. Further functional characterization of PPRs in Escherichia coli showed that they had larger node degrees and betweennesses in the protein–protein interaction network, and higher expression levels, than other outer membrane proteins, plasma membrane proteins or other intracellular proteins. These findings were consistent with what observed for mammalian virus receptors reported in previous studies, suggesting that viral protein receptors tend to have multiple interaction partners and high expressions. The study deepens our understanding of virus–host interactions. Availability and implementation phageReceptor is publicly available from: http://www.computationalbiology.cn/phageReceptor/index.html. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Key Plan for Scientific Research and Development of China

Hunan Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Chinese Academy of Medical Sciences

Fundamental Research Funds for the Central Universities of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3