EWF: simulating exact paths of the Wright–Fisher diffusion

Author:

Sant Jaromir1ORCID,Jenkins Paul A123ORCID,Koskela Jere1ORCID,Spanò Dario1

Affiliation:

1. Department of Statistics, University of Warwick , Coventry CV4 7AL, UK

2. Department of Computer Science, University of Warwick , Coventry CV4 7AL, UK

3. The Alan Turing Institute, British Library , London NW1 2DB, UK

Abstract

Abstract Motivation The Wright–Fisher diffusion is important in population genetics in modelling the evolution of allele frequencies over time subject to the influence of biological phenomena such as selection, mutation and genetic drift. Simulating the paths of the process is challenging due to the form of the transition density. We present EWF, a robust and efficient sampler which returns exact draws for the diffusion and diffusion bridge processes, accounting for general models of selection including those with frequency dependence. Results Given a configuration of selection, mutation and endpoints, EWF returns draws at the requested sampling times from the law of the corresponding Wright–Fisher process. Output was validated by comparison to approximations of the transition density via the Kolmogorov–Smirnov test and QQ plots. Availability and implementation All softwares are available at https://github.com/JaroSant/EWF. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

EPSRC and the Alan Turing Institute

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3