MK-BMC: a Multi-Kernel framework with Boosted distance metrics for Microbiome data for Classification

Author:

Xu Huang1,Wang Tian2,Miao Yuqi2,Qian Min2,Yang Yaning1ORCID,Wang Shuang2ORCID

Affiliation:

1. Department of Statistics and Finance, University of Science and Technology of China , Hefei 230026, China

2. Department of Biostatistics, Mailman School of Public Health, Columbia University , New York, NY 10032, United States

Abstract

Abstract Motivation Research on human microbiome has suggested associations with human health, opening opportunities to predict health outcomes using microbiome. Studies have also suggested that diverse forms of taxa such as rare taxa that are evolutionally related and abundant taxa that are evolutionally unrelated could be associated with or predictive of a health outcome. Although prediction models were developed for microbiome data, no prediction models currently exist that use multiple forms of microbiome–outcome associations. Results We developed MK-BMC, a Multi-Kernel framework with Boosted distance Metrics for Classification using microbiome data. We propose to first boost widely used distance metrics for microbiome data using taxon-level association signal strengths to up-weight taxa that are potentially associated with an outcome of interest. We then propose a multi-kernel prediction model with one kernel capturing one form of association between taxa and the outcome, where a kernel measures similarities of microbiome compositions between pairs of samples being transformed from a proposed boosted distance metric. We demonstrated superior prediction performance of (i) boosted distance metrics for microbiome data over original ones and (ii) MK-BMC over competing methods through extensive simulations. We applied MK-BMC to predict thyroid, obesity, and inflammatory bowel disease status using gut microbiome data from the American Gut Project and observed much-improved prediction performance over that of competing methods. The learned kernel weights help us understand contributions of individual microbiome signal forms nicely. Availability and implementation Source code together with a sample input dataset is available at https://github.com/HXu06/MK-BMC

Funder

Department of Biostatistics, Columbia University

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3