Cancer subtype identification by consensus guided graph autoencoders

Author:

Liang Cheng1ORCID,Shang Mingchao1,Luo Jiawei2

Affiliation:

1. School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China

2. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China

Abstract

Abstract Motivation Cancer subtype identification aims to divide cancer patients into subgroups with distinct clinical phenotypes and facilitate the development for subgroup specific therapies. The massive amount of multi-omics datasets accumulated in the public databases have provided unprecedented opportunities to fulfill this task. As a result, great computational efforts have been made to accurately identify cancer subtypes via integrative analysis of these multi-omics datasets. Results In this article, we propose a Consensus Guided Graph Autoencoder (CGGA) to effectively identify cancer subtypes. First, we learn for each omic a new feature matrix by using graph autoencoders, where both structure information and node features can be effectively incorporated during the learning process. Second, we learn a set of omic-specific similarity matrices together with a consensus matrix based on the features obtained in the first step. The learned omic-specific similarity matrices are then fed back to the graph autoencoders to guide the feature learning. By iterating the two steps above, our method obtains a final consensus similarity matrix for cancer subtyping. To comprehensively evaluate the prediction performance of our method, we compare CGGA with several approaches ranging from general-purpose multi-view clustering algorithms to multi-omics-specific integrative methods. The experimental results on both generic datasets and cancer datasets confirm the superiority of our method. Moreover, we validate the effectiveness of our method in leveraging multi-omics datasets to identify cancer subtypes. In addition, we investigate the clinical implications of the obtained clusters for glioblastoma and provide new insights into the treatment for patients with different subtypes. Availabilityand implementation The source code of our method is freely available at https://github.com/alcs417/CGGA. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Major Fundamental Research Project of Shandong Province

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3