Chaining for accurate alignment of erroneous long reads to acyclic variation graphs

Author:

Ma Jun1,Cáceres Manuel1ORCID,Salmela Leena1,Mäkinen Veli1ORCID,Tomescu Alexandru I1ORCID

Affiliation:

1. Department of Computer Science, University of Helsinki , 00014 Helsinki, Finland

Abstract

Abstract Motivation Aligning reads to a variation graph is a standard task in pangenomics, with downstream applications such as improving variant calling. While the vg toolkit [Garrison et al. (Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat Biotechnol 2018;36:875–9)] is a popular aligner of short reads, GraphAligner [Rautiainen and Marschall (GraphAligner: rapid and versatile sequence-to-graph alignment. Genome Biol 2020;21:253–28)] is the state-of-the-art aligner of erroneous long reads. GraphAligner works by finding candidate read occurrences based on individually extending the best seeds of the read in the variation graph. However, a more principled approach recognized in the community is to co-linearly chain multiple seeds. Results We present a new algorithm to co-linearly chain a set of seeds in a string labeled acyclic graph, together with the first efficient implementation of such a co-linear chaining algorithm into a new aligner of erroneous long reads to acyclic variation graphs, GraphChainer. We run experiments aligning real and simulated PacBio CLR reads with average error rates 15% and 5%. Compared to GraphAligner, GraphChainer aligns 12–17% more reads, and 21–28% more total read length, on real PacBio CLR reads from human chromosomes 1, 22, and the whole human pangenome. On both simulated and real data, GraphChainer aligns between 95% and 99% of all reads, and of total read length. We also show that minigraph [Li et al. (The design and construction of reference pangenome graphs with minigraph. Genome Biol 2020;21:265–19.)] and minichain [Chandra and Jain (Sequence to graph alignment using gap-sensitive co-linear chaining. In: Proceedings of the 27th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2023). Springer, 2023, 58–73.)] obtain an accuracy of <60% on this setting. Availability and implementation GraphChainer is freely available at https://github.com/algbio/GraphChainer. The datasets and evaluation pipeline can be reached from the previous address.

Funder

European Research Council

European Union’s Horizon 2020 research and innovation program

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maximum-scoring path sets on pangenome graphs of constant treewidth;Frontiers in Bioinformatics;2024-07-01

2. Label-guided seed-chain-extend alignment on annotated De Bruijn graphs;Bioinformatics;2024-06-28

3. Technological Development and Advances for Constructing and Analyzing Plant Pangenomes;Genome Biology and Evolution;2024-04

4. Finding maximal exact matches in graphs;Algorithms for Molecular Biology;2024-03-11

5. Co-linear chaining on pangenome graphs;Algorithms for Molecular Biology;2024-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3