Affiliation:
1. Department of Computer Science, University of Helsinki , 00014 Helsinki, Finland
Abstract
Abstract
Motivation
Aligning reads to a variation graph is a standard task in pangenomics, with downstream applications such as improving variant calling. While the vg toolkit [Garrison et al. (Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat Biotechnol 2018;36:875–9)] is a popular aligner of short reads, GraphAligner [Rautiainen and Marschall (GraphAligner: rapid and versatile sequence-to-graph alignment. Genome Biol 2020;21:253–28)] is the state-of-the-art aligner of erroneous long reads. GraphAligner works by finding candidate read occurrences based on individually extending the best seeds of the read in the variation graph. However, a more principled approach recognized in the community is to co-linearly chain multiple seeds.
Results
We present a new algorithm to co-linearly chain a set of seeds in a string labeled acyclic graph, together with the first efficient implementation of such a co-linear chaining algorithm into a new aligner of erroneous long reads to acyclic variation graphs, GraphChainer. We run experiments aligning real and simulated PacBio CLR reads with average error rates 15% and 5%. Compared to GraphAligner, GraphChainer aligns 12–17% more reads, and 21–28% more total read length, on real PacBio CLR reads from human chromosomes 1, 22, and the whole human pangenome. On both simulated and real data, GraphChainer aligns between 95% and 99% of all reads, and of total read length. We also show that minigraph [Li et al. (The design and construction of reference pangenome graphs with minigraph. Genome Biol 2020;21:265–19.)] and minichain [Chandra and Jain (Sequence to graph alignment using gap-sensitive co-linear chaining. In: Proceedings of the 27th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2023). Springer, 2023, 58–73.)] obtain an accuracy of <60% on this setting.
Availability and implementation
GraphChainer is freely available at https://github.com/algbio/GraphChainer. The datasets and evaluation pipeline can be reached from the previous address.
Funder
European Research Council
European Union’s Horizon 2020 research and innovation program
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献