POIBM: batch correction of heterogeneous RNA-seq datasets through latent sample matching

Author:

Holmström Susanna1,Hautaniemi Sampsa1ORCID,Häkkinen Antti1ORCID

Affiliation:

1. Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki , FI-00014 Helsinki, Finland

Abstract

Abstract Motivation RNA sequencing and other high-throughput technologies are essential in understanding complex diseases, such as cancers, but are susceptible to technical factors manifesting as patterns in the measurements. These batch patterns hinder the discovery of biologically relevant patterns. Unbiased batch effect correction in heterogeneous populations currently requires special experimental designs or phenotypic labels, which are not readily available for patient samples in existing datasets. Results We present POIBM, an RNA-seq batch correction method, which learns virtual reference samples directly from the data. We use a breast cancer cell line dataset to show that POIBM exceeds or matches the performance of previous methods, while being blind to the phenotypes. Further, we analyze The Cancer Genome Atlas RNA-seq data to show that batch effects plague many cancer types; POIBM effectively discovers the true replicates in stomach adenocarcinoma; and integrating the corrected data in endometrial carcinoma improves cancer subtyping. Availability and implementation https://bitbucket.org/anthakki/poibm/ (archived at https://doi.org/10.5281/zenodo.6122436). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

European Union’s Horizon 2020 research and innovation programme under Grant Agreement

Sigrid Jusélius Foundation and the Cancer Foundation Finland

Academy of Finland

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference28 articles.

1. Pan-cancer analysis reveals technical artifacts in TCGA germline variant calls;Buckley;BMC Genomics,2017

2. Comprehensive molecular portraits of invasive lobular breast cancer;Ciriello;Cell,2015

3. PRISM: recovering cell type specific expression profiles from individual composite RNA-seq samples;Hakkinen;Bioinformatics,2021

4. Adjusting batch effects in microarray expression data using empirical Bayes methods;Johnson;Biostatistics,2007

5. Guide for library design and bias correction for large-scale transcriptome studies using highly multiplexed RNAseq methods;Katayama;BMC Bioinformatics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3