MEMO: multi-experiment mixture model analysis of censored data

Author:

Geissen Eva-Maria1,Hasenauer Jan23,Heinrich Stephanie4,Hauf Silke4,Theis Fabian J.23,Radde Nicole E.1

Affiliation:

1. Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart 70550, Germany

2. Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg 85764, Germany

3. Department of Mathematics, Technische Universität München, Garching 85748, Germany

4. Friedrich Miescher Laboratory of the Max Planck Society, Tübingen 72076, Germany

Abstract

Abstract Motivation: The statistical analysis of single-cell data is a challenge in cell biological studies. Tailored statistical models and computational methods are required to resolve the subpopulation structure, i.e. to correctly identify and characterize subpopulations. These approaches also support the unraveling of sources of cell-to-cell variability. Finite mixture models have shown promise, but the available approaches are ill suited to the simultaneous consideration of data from multiple experimental conditions and to censored data. The prevalence and relevance of single-cell data and the lack of suitable computational analytics make automated methods, that are able to deal with the requirements posed by these data, necessary. Results: We present MEMO, a flexible mixture modeling framework that enables the simultaneous, automated analysis of censored and uncensored data acquired under multiple experimental conditions. MEMO is based on maximum-likelihood inference and allows for testing competing hypotheses. MEMO can be applied to a variety of different single-cell data types. We demonstrate the advantages of MEMO by analyzing right and interval censored single-cell microscopy data. Our results show that an examination of censoring and the simultaneous consideration of different experimental conditions are necessary to reveal biologically meaningful subpopulation structures. MEMO allows for a stringent analysis of single-cell data and enables researchers to avoid misinterpretation of censored data. Therefore, MEMO is a valuable asset for all fields that infer the characteristics of populations by looking at single individuals such as cell biology and medicine. Availability and Implementation: MEMO is implemented in MATLAB and freely available via github (https://github.com/MEMO-toolbox/MEMO). Contacts: eva-maria.geissen@ist.uni-stuttgart.de or nicole.radde@ist.uni-stuttgart.de Supplementary information:  Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3