Affiliation:
1. Computer Science Department, Humboldt-Universität zu Berlin , Berlin 10099, Germany
2. Center for Information and Language Processing, Ludwig-Maximilians-Universität München , München 80539, Germany
Abstract
Abstract
Motivation
Biomedical entity linking (BEL) is the task of grounding entity mentions to a knowledge base (KB). It plays a vital role in information extraction pipelines for the life sciences literature. We review recent work in the field and find that, as the task is absent from existing benchmarks for biomedical text mining, different studies adopt different experimental setups making comparisons based on published numbers problematic. Furthermore, neural systems are tested primarily on instances linked to the broad coverage KB UMLS, leaving their performance to more specialized ones, e.g. genes or variants, understudied.
Results
We therefore developed BELB, a biomedical entity linking benchmark, providing access in a unified format to 11 corpora linked to 7 KBs and spanning six entity types: gene, disease, chemical, species, cell line, and variant. BELB greatly reduces preprocessing overhead in testing BEL systems on multiple corpora offering a standardized testbed for reproducible experiments. Using BELB, we perform an extensive evaluation of six rule-based entity-specific systems and three recent neural approaches leveraging pre-trained language models. Our results reveal a mixed picture showing that neural approaches fail to perform consistently across entity types, highlighting the need of further studies towards entity-agnostic models.
Availability and implementation
The source code of BELB is available at: https://github.com/sg-wbi/belb. The code to reproduce our experiments can be found at: https://github.com/sg-wbi/belb-exp.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献