Inference of 3D genome architecture by modeling overdispersion of Hi-C data

Author:

Varoquaux Nelle1ORCID,Noble William S23ORCID,Vert Jean-Philippe45

Affiliation:

1. TIMC, Université Grenoble Alpes, CNRS, Grenoble INP , Grenoble 38000, France

2. Department of Genome Sciences, University of Washington , Seattle, WA 98195, USA

3. Paul G. Allen School of Computer Science and Engineering, University of Washington , Seattle, WA 98195, USA

4. Brain Team, Google Research , Paris 75009, France

5. Centre for Computational Biology , MINES ParisTech, PSL University , Paris 75006, France

Abstract

Abstract Motivation We address the challenge of inferring a consensus 3D model of genome architecture from Hi-C data. Existing approaches most often rely on a two-step algorithm: first, convert the contact counts into distances, then optimize an objective function akin to multidimensional scaling (MDS) to infer a 3D model. Other approaches use a maximum likelihood approach, modeling the contact counts between two loci as a Poisson random variable whose intensity is a decreasing function of the distance between them. However, a Poisson model of contact counts implies that the variance of the data is equal to the mean, a relationship that is often too restrictive to properly model count data. Results We first confirm the presence of overdispersion in several real Hi-C datasets, and we show that the overdispersion arises even in simulated datasets. We then propose a new model, called Pastis-NB, where we replace the Poisson model of contact counts by a negative binomial one, which is parametrized by a mean and a separate dispersion parameter. The dispersion parameter allows the variance to be adjusted independently from the mean, thus better modeling overdispersed data. We compare the results of Pastis-NB to those of several previously published algorithms, both MDS-based and statistical methods. We show that the negative binomial inference yields more accurate structures on simulated data, and more robust structures than other models across real Hi-C replicates and across different resolutions. Availability and implementation A Python implementation of Pastis-NB is available at https://github.com/hiclib/pastis under the BSD license. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

NIH

IRGA

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3