XGBLC: an improved survival prediction model based on XGBoost

Author:

Ma Baoshan1ORCID,Yan Ge1,Chai Bingjie1,Hou Xiaoyu1

Affiliation:

1. School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China

Abstract

Abstract Motivation Survival analysis using gene expression profiles plays a crucial role in the interpretation of clinical research and assessment of disease therapy programs. Several prediction models have been developed to explore the relationship between patients’ covariates and survival. However, the high-dimensional genomic features limit the prediction performance of the survival model. Thus, an accurate and reliable prediction model is necessary for survival analysis using high-dimensional genomic data. Results In this study, we proposed an improved survival prediction model based on XGBoost framework called XGBLC, which used Lasso-Cox to enhance the ability to analyze high-dimensional genomic data. The novel first- and second-order gradient statistics of Lasso-Cox were defined to construct the loss function of XGBLC. We extensively tested our XGBLC algorithm on both simulated and real-world datasets, and estimated the performance of models with 5-fold cross-validation. Based on 20 cancer datasets from The Cancer Genome Atlas (TCGA), XGBLC outperforms five state-of-the-art survival methods in terms of C-index, Brier score and AUC. The results show that XGBLC still keeps good accuracy and robustness by comparing the performance on the simulated datasets with different scales. The developed prediction model would be beneficial for physicians to understand the effects of patient’s genomic characteristics on survival and make personalized treatment decisions. Availability and implementation The implementation of XGBLC algorithm based on R language is available at: https://github.com/lab319/XGBLC Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Dalian Science and Technology Innovation Fund

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3