BitQT: a graph-based approach to the quality threshold clustering of molecular dynamics

Author:

González-Alemán Roy12ORCID,Platero-Rochart Daniel1ORCID,Hernández-Castillo David3ORCID,Hernández-Rodríguez Erix W4ORCID,Caballero Julio5ORCID,Leclerc Fabrice2ORCID,Montero-Cabrera Luis1ORCID

Affiliation:

1. Departamento de Química-Física, Laboratorio de Química Computacional y Teórica (LQCT), Facultad de Química, Universidad de La Habana, La Habana 10400, Cuba

2. Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette F-91198, France

3. Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria

4. Laboratorio de Bioinformática y Química Computacional, Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile

5. Departamento de Bioinformática, Facultad de Ingeniería, Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca 3460000, Chile

Abstract

Abstract Motivation Classical Molecular Dynamics (MD) is a standard computational approach to model time-dependent processes at the atomic level. The inherent sparsity of increasingly huge generated trajectories demands clustering algorithms to reduce other post-simulation analysis complexity. The Quality Threshold (QT) variant is an appealing one from the vast number of available clustering methods. It guarantees that all members of a particular cluster will maintain a collective similarity established by a user-defined threshold. Unfortunately, its high computational cost for processing big data limits its application in the molecular simulation field. Results In this work, we propose a methodological parallel between QT clustering and another well-known algorithm in the field of Graph Theory, the Maximum Clique Problem. Molecular trajectories are represented as graphs whose nodes designate conformations, while unweighted edges indicate mutual similarity between nodes. The use of a binary-encoded RMSD matrix coupled to the exploitation of bitwise operations to extract clusters significantly contributes to reaching a very affordable algorithm compared to the few implementations of QT for MD available in the literature. Our alternative provides results in good agreement with the exact one while strictly preserving the collective similarity of clusters. Availability and implementation The source code and documentation of BitQT are free and publicly available on GitHub (https://github.com/LQCT/BitQT.git) and ReadTheDocs (https://bitqt.readthedocs.io/en/latest/), respectively. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Eiffel Scholarship Program of Excellence of Campus France

Project Hubert Curien-Carlos J. Finlay

Fondo Nacional de Desarrollo Científico y Tecnológico [CONICYT FONDECYT/INACH/POSTDOCTORADO

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference33 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3