Towards a reproducible interactome: semantic-based detection of redundancies to unify protein–protein interaction databases

Author:

Melkonian Marc12,Juigné Camille13,Dameron Olivier1,Rabut Gwenaël2ORCID,Becker Emmanuelle1ORCID

Affiliation:

1. Univ Rennes, Inria, CNRS, IRISA - UMR 6074, F-35000 Rennes, France

2. Univ Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France

3. Pegase, Inrae, Institut Agro , 35590 Saint-Gilles, France

Abstract

Abstract Motivation Information on protein–protein interactions is collected in numerous primary databases with their own curation process. Several meta-databases aggregate primary databases to provide more exhaustive datasets. In addition to exhaustivity, aggregation contributes to reliability by providing an overview of the various studies and detection methods supporting an interaction. However, interactions listed in different primary databases are partly redundant because some publications reporting protein–protein interactions have been curated by multiple primary databases. Mere aggregation can thus introduce a bias if these redundancies are not identified and eliminated. To overcome this bias, meta-databases rely on the Molecular Interaction ontology that describes interaction detection methods, but they do not fully take advantage of the ontology’s rich semantics, which leads to systematically overestimating interaction reproducibility. Results We propose a precise definition of explicit and implicit redundancy and show that both can be easily detected using Semantic Web technologies. We apply this process to a dataset from the Agile Protein Interactomes DataServer (APID) meta-database and show that while explicit redundancies were detected by the APID aggregation process, about 15% of APID entries are implicitly redundant and should not be taken into account when presenting confidence-related metrics. More than 90% of implicit redundancies result from the aggregation of distinct primary databases, whereas the remaining occurs between entries of a single database. Finally, we build a ‘reproducible interactome’ with interactions that have been reproduced by multiple methods or publications. The size of the reproducible interactome is drastically impacted by removing redundancies for both yeast (−59%) and human (−56%), and we show that this is largely due to implicit redundancies. Availability and implementation Software, data and results are available at https://gitlab.com/nnet56/reproducible-interactome, https://reproducible-interactome.genouest.org/, Zenodo (https://doi.org/10.5281/zenodo.5595037) and NDEx (https://doi.org/10.18119/N94302 and https://doi.org/10.18119/N97S4D). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

University of Rennes 1 with a Défi Emergent

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3