A network-based drug repurposing method via non-negative matrix factorization

Author:

Sadeghi Shaghayegh1ORCID,Lu Jianguo1,Ngom Alioune1

Affiliation:

1. School of Computer Science, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada

Abstract

Abstract Motivation Drug repurposing is a potential alternative to the traditional drug discovery process. Drug repurposing can be formulated as a recommender system that recommends novel indications for available drugs based on known drug-disease associations. This article presents a method based on non-negative matrix factorization (NMF-DR) to predict the drug-related candidate disease indications. This work proposes a recommender system-based method for drug repurposing to predict novel drug indications by integrating drug and diseases related data sources. For this purpose, this framework first integrates two types of disease similarities, the associations between drugs and diseases, and the various similarities between drugs from different views to make a heterogeneous drug–disease interaction network. Then, an improved non-negative matrix factorization-based method is proposed to complete the drug–disease adjacency matrix with predicted scores for unknown drug–disease pairs. Results The comprehensive experimental results show that NMF-DR achieves superior prediction performance when compared with several existing methods for drug–disease association prediction. Availability and implementation The program is available at https://github.com/sshaghayeghs/NMF-DR. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Science and Engineering Research Council of Canada (NSERC) Discovery

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3