PredMP: a web server for de novo prediction and visualization of membrane proteins

Author:

Wang Sheng1,Fei Shiyang2,Wang Zongan3,Li Yu1ORCID,Xu Jinbo4,Zhao Feng5,Gao Xin1

Affiliation:

1. Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

2. COMPASS, New York, NY, USA

3. Department of Chemistry, James Franck Institute, University of Chicago, Chicago, IL, USA

4. Toyota Technological Institute at Chicago, Chicago, IL, USA

5. Prospect Institute of Fatty Acids and Health, Qingdao University, Ningxia, China

Abstract

Abstract Motivation PredMP is the first web service, to our knowledge, that aims at de novo prediction of the membrane protein (MP) 3D structure followed by the embedding of the MP into the lipid bilayer for visualization. Our approach is based on a high-throughput Deep Transfer Learning (DTL) method that first predicts MP contacts by learning from non-MPs and then predicts the 3D model of the MP using the predicted contacts as distance restraints. This algorithm is derived from our previous Deep Learning (DL) method originally developed for soluble protein contact prediction, which has been officially ranked No. 1 in CASP12. The DTL framework in our approach overcomes the challenge that there are only a limited number of solved MP structures for training the deep learning model. There are three modules in the PredMP server: (i) The DTL framework followed by the contact-assisted folding protocol has already been implemented in RaptorX-Contact, which serves as the key module for 3D model generation; (ii) The 1D annotation module, implemented in RaptorX-Property, is used to predict the secondary structure and disordered regions; and (iii) the visualization module to display the predicted MPs embedded in the lipid bilayer guided by the predicted transmembrane topology. Results Tested on 510 non-redundant MPs, our server predicts correct folds for ∼290 MPs, which significantly outperforms existing methods. Tested on a blind and live benchmark CAMEO from September 2016 to January 2018, PredMP can successfully model all 10 MPs belonging to the hard category. Availability and implementation PredMP is freely accessed on the web at http://www.predmp.com. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

King Abdullah University of Science and Technology

National Institutes of Health

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3