Affiliation:
1. Inria, Université Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
Abstract
Abstract
Motivation
Thanks to the recent advances in structural biology, nowadays 3D structures of various proteins are solved on a routine basis. A large portion of these structures contain structural repetitions or internal symmetries. To understand the evolution mechanisms of these proteins and how structural repetitions affect the protein function, we need to be able to detect such proteins very robustly. As deep learning is particularly suited to deal with spatially organized data, we applied it to the detection of proteins with structural repetitions.
Results
We present DeepSymmetry, a versatile method based on 3D convolutional networks that detects structural repetitions in proteins and their density maps. Our method is designed to identify tandem repeat proteins, proteins with internal symmetries, symmetries in the raw density maps, their symmetry order and also the corresponding symmetry axes. Detection of symmetry axes is based on learning 6D Veronese mappings of 3D vectors, and the median angular error of axis determination is less than one degree. We demonstrate the capabilities of our method on benchmarks with tandem-repeated proteins and also with symmetrical assemblies. For example, we have discovered about 7800 putative tandem repeat proteins in the PDB.
Availability and implementation
The method is available at https://team.inria.fr/nano-d/software/deepsymmetry. It consists of a C++ executable that transforms molecular structures into volumetric density maps, and a Python code based on the TensorFlow framework for applying the DeepSymmetry model to these maps.
Supplementary information
Supplementary data are available at Bioinformatics online.
Funder
l'Agence Nationale de la recherche
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献