SFINN: inferring gene regulatory network from single-cell and spatial transcriptomic data with shared factor neighborhood and integrated neural network

Author:

Wang Yongjie1,Zhou Fengfan1,Guan Jinting123ORCID

Affiliation:

1. Department of Automation, Xiamen University , Xiamen, Fujian 361102, China

2. Key Laboratory of System Control and Information Processing, Ministry of Education , Shanghai 200240, China

3. National Institute for Data Science in Health and Medicine, Xiamen University , Xiamen, Fujian 361102, China

Abstract

Abstract Motivation The rise of single-cell RNA sequencing (scRNA-seq) technology presents new opportunities for constructing detailed cell type-specific gene regulatory networks (GRNs) to study cell heterogeneity. However, challenges caused by noises, technical errors, and dropout phenomena in scRNA-seq data pose significant obstacles to GRN inference, making the design of accurate GRN inference algorithms still essential. The recent growth of both single-cell and spatial transcriptomic sequencing data enables the development of supervised deep learning methods to infer GRNs on these diverse single-cell datasets. Results In this study, we introduce a novel deep learning framework based on shared factor neighborhood and integrated neural network (SFINN) for inferring potential interactions and causalities between transcription factors and target genes from single-cell and spatial transcriptomic data. SFINN utilizes shared factor neighborhood to construct cellular neighborhood network based on gene expression data and additionally integrates cellular network generated from spatial location information. Subsequently, the cell adjacency matrix and gene pair expression are fed into an integrated neural network framework consisting of a graph convolutional neural network and a fully-connected neural network to determine whether the genes interact. Performance evaluation in the tasks of gene interaction and causality prediction against the existing GRN reconstruction algorithms demonstrates the usability and competitiveness of SFINN across different kinds of data. SFINN can be applied to infer GRNs from conventional single-cell sequencing data and spatial transcriptomic data. Availability and implementation SFINN can be accessed at GitHub: https://github.com/JGuan-lab/SFINN.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province of China

Foundation of Key Laboratory of System Control and Information Processing, Ministry of Education, China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3