LeafCutterMD: an algorithm for outlier splicing detection in rare diseases

Author:

Jenkinson Garrett12ORCID,Li Yang I34,Basu Shubham12,Cousin Margot A12,Oliver Gavin R12,Klee Eric W12

Affiliation:

1. Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55902, USA

2. Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA

3. Section of Genetic Medicine, Department of Medicine, Chicago, IL 60637, USA

4. Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA

Abstract

Abstract Motivation Next-generation sequencing is rapidly improving diagnostic rates in rare Mendelian diseases, but even with whole genome or whole exome sequencing, the majority of cases remain unsolved. Increasingly, RNA sequencing is being used to solve many cases that evade diagnosis through sequencing alone. Specifically, the detection of aberrant splicing in many rare disease patients suggests that identifying RNA splicing outliers is particularly useful for determining causal Mendelian disease genes. However, there is as yet a paucity of statistical methodologies to detect splicing outliers. Results We developed LeafCutterMD, a new statistical framework that significantly improves the previously published LeafCutter in the context of detecting outlier splicing events. Through simulations and analysis of real patient data, we demonstrate that LeafCutterMD has better power than the state-of-the-art methodology while controlling false-positive rates. When applied to a cohort of disease-affected probands from the Mayo Clinic Center for Individualized Medicine, LeafCutterMD recovered all aberrantly spliced genes that had previously been identified by manual curation efforts. Availability and implementation The source code for this method is available under the opensource Apache 2.0 license in the latest release of the LeafCutter software package available online at http://davidaknowles.github.io/leafcutter. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Mayo Clinic Center for Individualized Medicine

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3